

Numeracy lesson plans Primary 4, term 1, weeks 6-10
Shapes, fractions and time

Introduction

The literacy and numeracy lesson plans arising from the School Improvement Programme (SIP) are part of efforts to improve teaching and learning in response to the baseline surveys and classroom observations in 2010. These indicated that teachers had challenges with lesson delivery, which in turn negatively affected children's learning.
To improve children's learning, ESSPIN (Education Sector Support Programme in Nigeria) supported the State to provide lesson plans to primary $1-3$ teachers in all 1,223 public primary schools during the 2014/15 school year.

In the 2015/16 school year, we are glad to extend the lesson plans to primary 4- 5 teachers to enable more children to benefit from the innovation.

Nneka Onuora Executive Chairman, Enugu State Universal Basic Education Board

Foreword

Quality education comes about as a mix of factors. The teacher is the most important element in ensuring that a child acquires the right kind of education to meet acceptable learning outcome benchmarks. It takes a lot to bring a teacher to exhibit the right mix of attitudes, aptitudes and skills, which is why the state has partnered with ESSPIN to develop literacy and numeracy lesson plans.

I hope the lesson plans will empower our teachers to equip our children with the literacy and numeracy skills they need to succeed in both school and society.

Finally, I commend all who have worked hard to develop and produce the lesson plans, especially the Enugu State Universal Basic Education Board, the UK Department for International Development (DFID) and the DFID-funded Education Sector Support Programme in Nigeria (ESSPIN).

Professor Uche Eze
Honourable Commissioner for Education Enugu State

The numeracy lessons feach calculation, shape, symmetry, fractions and time. Each week focuses on one of these topics.

This section illustrates a key concept through simple instructions and photographs. A sign at the top of the column shows you which part of the lesson uses this resource.

Learning expectations

Every pupil in the class will be at a different stage of understanding in maths. The first page of each week outlines learning expectations for the week. These learning expectations are broken into three levels:
What all pupils will be able to do.

What most pupils will be able to do.

What some pupils will be able to do.

Assessment

On each weekly page there is an assessment task for you to carry out with five pupils at the end of the week. This will help you find out whether they have met the learning expectations.
Next to the task, there is an example of a pupil's work, which shows what a pupil can do if they have met the learning expectations.
If most pupils have not met the learning expectations, you may have to teach some of the week again.

Daily practice

Introduction

Main activity

Plenary

Helps the pupils to practise something they have previously learned. It should only last 15 minutes and move at a fairly fast pace.

Provides the focus for the lesson. Often involves a variety of fun, quick activities which prepare the pupils for the main topic.

Gives the pupils the opportunity to explore the main topic in different ways. This usually involves group, pair or individual tasks. Your role as a teacher during the main activity is to work with groups and individuals to help them to understand the ideas.

Finishes the lesson with different ways of reviewing learning.

Words/phrases

Write these words on the chalkboard and leave them there for the week.
shape
two-dimensional (2D)
three-dimensional (3D)
north
east
south
west
direction
symmetry
symmetrical
horizontally
vertically diagonally parallel right angle degrees (${ }^{\circ}$)
polygon

Learning expectations

By the end of the week:
All pupils will be able to:
Identify 2D and 3D shapes.
Most pupils will be
able to:
Draw lines of symmetry on 2D shapes.
Some pupils will be able to:
Use compass points
to describe the postion
of an object.

Lesson

title
Week 6: Day 1:

Shapes

Day 1:

Compass/

By the end of the lesson, most pupils will be able to:

Describe simple 2D shapes.
Follow directions using compass points.

2D card shapes

Before the lesson:
Read How? Finding north and make a simple compass, as shown below.
Make a set of large cardboard 2D shapes (square, circle, rectangle, triangle, pentagon, hexagon) for each group.

Make a simple compass.

Take the pupils out at midday.

Tell them to stand with their backs to the sun. They are now facing north.

Give pupils north, south, east and west cards and help them stand in the compass positions

Put the compass on the ground, pointing to north.

Day 2:

Symmetry

2D card shapes/
Week 6: Day 2:

Shapes

By the end of the lesson, most pupils will be able to:
Identify 2D shapes.
Draw lines of symmetry on 2D shapes.

Before the lesson:

Read How? Properties of 2D shapes, as shown below and have ready
the set of 2D shapes for each group from Week 6, Day 1 (yesterday).
Draw the symmetry chart, as shown right, on the chalkboard and find a small mirror for each group.

Tell the pupils that a circle is round and a triangle has three edges and three corners.

Remind them that a square has four equal length sides, four edges and four corners.

Tell them that the opposite sides of a rectangle are equal in length, with four edges and four corners.

Tell the pupils that a pentagon has five equal length sides, five edges and five corners.

Tell them that a hexagon has six equal length sides, six edges and six corners.

15 minutes\quad HowWhat am l? game/ $2 D$ card shapes	10 minutes	$\begin{aligned} & 25 \\ & \text { minutes } \end{aligned}$	apes/	Symmerry chart	10 minutes
Daily practice	Introduction	Main activity			Plenary
Whole class teaching	Whole class teaching	Group task			Whole class teaching
Play the game What am I? with the pupils, as described below.	Ask if anyone can remember what 'symmetry' means.	Give each group a set of shapes.		Ask the pupils to draw the lines of symmetry on each shape.	Take the pupils outside and ask them to search
	Remind the pupils that	Tell the pupils they are going to investigate how many lines of symmetry each shape has.			for leaves with lines of symmetry.
Show the pupils the shapes, as shown left in How? Properites of 2D shapes and ask them to name each one.	if a shape can be folded into two equal parts, it is symmetrical.			Tell them to copy and complete the symmetry chart (below) on the chalkboard in their exercise books.	Keep the leaves for the next day.
	Hold up a paper rectangle and fold it into two	Explain that they can fold the shapes horizontally, vertically and diagonally to check for symmetry.			
Choose a shape but don't let the pupils see it.	equal parts, vertically and horizontally.			Choose some groups to say their results and ask the class if they agree.	
Tell them that they have to guess which shape it is.	Explain that the folds are called 'lines of symmetry'.	Show the use a mi	s how to check	Ask the pupils how many lines of symmetry there are	
Give them clues to help them guess, eg: 'I am a 2D shape. I have six edges and six corners' (hexagon).		if the lines of symmetry are correct.		on a circle.	
		Symmetry ch			
		Shape	Number of lines of symmetry		
Repeat until each shape has been described three times.		Rectangle			
		Circle			
		Triangle			
		Square			

Lesson

Week 6:	Day 3:
Shapes	Lines of symmetry

Leaves/Mirrors/
3D objects/

By the end of the lesson,

 most pupils will be able to:Identify 3D shapes.
Draw lines of symmetry on letters of the alphabet.

Before the lesson:

Have ready the leaves from yesterday and a small mirror for each group.
Read How? Properties of 3D shapes, as shown below, and have ready a set of 3D objects.

Tell the pupils that a cylinder has three faces, no corners and two edges.

Tell them that a cube and a cuboid both have six faces, eight corners and 12 edges.

Tell the pupils that a sphere has one face, no corners and no edges.

Tell them that a cone has two faces, no corners and one edge.

Tell the pupils that a triangular prism has five faces, six corners and nine edges.

Lesson

title
 \section*{Week 6: Day 4:
 \section*{Week 6: Day 4:

 Shapes

 Shapes

 Compass points}

 Compass points}

Compass/Object/
3D shapes/Flash cards

By the end of the lesson, most pupils will be able to:
Identify correctly 2D and 3D shapes.

Follow directions using compass points and right angles.

Before the lesson:

Have ready the simple compass from Week 6, Day 1 (earlier this week) and hide an object in the classroom.

Have ready a set of 3D shapes, a set of 2 D shape flash cards and draw the 2 D shapes on the chalkboard.

Read How? Describing furns, as shown below.

Ask the pupils to stand and face north, turn to the east, south, west and back to the north.

Tell them that a quarter turn can be described as '90' (degrees), or a 'right angle'.

Explain that a half turn can be described as '180' (degrees).

Tell them that a three quarter turn can be described as ' 270° ' (degrees).

Tell them that a full turn can be described as '360' ${ }^{\circ}$ (degrees).

$\begin{array}{\|l\|l} 15 & \text { Flash cards/ } \\ \text { minutes } & \text { 3D shapes } \end{array}$	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$	Compass/ Object			$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice	Introduction		Main activity		Plenary
Whole class teaching	Group task		Whole class teaching		Pair task
Show the 2D flash cards and ask the pupils to read the words with you.	Ask the groups to say the compass points with you.		Explain How? Describing turns, as shown left.	Ask the groups, in turn, questions involving compass directions:	Write on the chalkboard: 'One complete turn = \square \square° 'A quarter of a turn = \square
Hold up each card and choose some pupils to say the word and point	Place the simple compass on the floor so that it is lined up correctly with the north.		Tell the pupils to face north, turn to the east and ask, 'How far have you turned?' (A quarter of a turn).	'I face north and turn 90° to the left. Where am I now?'	'Half a turn = \square Ask the pairs to complete
to the correct shape on the chalkboard.	Explain to the pupils that they are going to play a treasure hunt game.		Ask them to face north, turn to the south and ask, 'How far you have turned?' (A half turn).	'I face south and turn 180° to the left.	these statements in their exercise books.
Hold up the 3D shapes and ask the pupils to name them.	Ask the groups in turn to stand by the door and, using compass points, direct them to the hidden object, eg: 'Go four steps north, now two steps east.'			Where am I now?' 'I face west and turn 270° to the left.	
Hold them up again and ask the pupils to point to any 2D shapes on the 3D shapes.			Write ' 360° ' on the chalkboard and explain that there are 360 degrees in a circle or complete turn. Ask, 'How many degrees are there in half a turn, a quarter of a turn, three quarters of a turn?'	Where am I now?' 'I face east and turn 360° to the left. Where am I now?'	

Lesso

Week 6: Day 5:
 Shapes

Polygon shapes/
2D shapes

By the end of the lesson,

 most pupils will be able to:Identify 2D and 3D shapes.
Find symmetrical and parallel lines and right angles in polygons.

Before the lesson:

Read How? Parallel lines and polygons,
as shown below.
Make a set of polygon shapes, as shown below, for each group and have ready the 2D shapes from Week 6, Day 1 (earlier this week).

Tell the pupils that parallel lines are two lines that never meet, they are always the same distance apart.

Tell them that polygons are 2D shapes with three or more straight sides.

Explain that a parallelogram is a flat shape with opposite sides that are parallel and equal in length.

Tell the pupils that a trapezium has a pair of opposite sides that are parallel.

Explain that a kite has two pairs of equal sides. Each pair of sides meets.

	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$	$\left.\right\|^{25} \text { minutes }\left.\right\|^{\text {Polygon shapes }}$	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice	Introduction	Main activity	Plenary
Whole class teaching	Whole class teaching	Group task	Pair task
Choose some pupils to name some 2D shapes.	Write 'symmetry' on the chalkboard and ask if anyone	Give each group a set of polygon shapes.	Remind the pupils about the compass points.
Explain to the class that polygons are any 2D shapes with three or more straight sides.	can say what it means. Choose some pupils to draw lines of symmetry on the polygons on	Tell them to look closely at the shapes, fold them to check for symmetry and count any right angles	
Explain the meaning of parallel lines as shown left in How? Parallel lines and polygons.	the chalkboard. Write 'parallel' on the chalkboard and ask if anyone can remind you	and parallel lines they can see. Ask each group to make a chart that shows	
Draw four polygons on the chalkboard and name them.	what it means. Choose some pupils to point to any parallel lines	properties of poly	
Ask the pupils to describe each shape and point to any parallel lines they can see.	in the 2 D shapes. Explain that a right angle can be described as:		
Ask if they know any other shapes that have parallel lines, ie: a square, a rectangle.	a quarter of a turn, 90°, or a 'square corner'. Choose some pupils to point to any right angles in the 2 D shapes.		

Words/phrases

Write these words on the chalkboard and leave them there for the week.
double
halve
quarter
rectangle
equal parts
fraction
divide
numerator
denominator
equivalent fractions
greater than (>)
less than (<)

Learning expectations

By the end of the week:
All pupils will be
able to:
Halve and double numbers from 0-100.
Most pupils will be able to:
Find equivalent fractions from a given fraction.

Some pupils will be able to:
Solve word problems that involve fractions.

Less title
 Week 7:
 Fractions

 Day 1:

 Day 1:
 Fraction strips

Tell them to fold the third strip into four equal parts and write 'a quarter' on each section

Ask them to fold the fourth strip into eight equal parts and write 'an eighth' on each section.

Tell them to fold the fifth strip into three equal parts and write a third' on each section.

Ask them to fold the sixth strip into six equal parts and write 'a sixth' on each section.

Lesson
 title
 Week 7: Day 2:
 Fractions

By the end of the lesson, most pupils will be able to:
Double numbers up to 100 .
Identify the numerator and denominator in a fraction.

Draw a rectangle, divide it into eight equal sections and shade in five

Tell the pupils to write the fraction you have shaded

Explain that the top number is the 'numerator' and the bottom number is the 'denominator'.

Before the lesson:

Read How? Fraction strips from Week 7 , Day 1 (yesterday).
Have ready the fraction strips from Week 7, Day 1 (yesterday) and two more strips of paper for each group.
Read How? Numerator and denominator, as shown left.
sections.

How?

Numerator and denominator

15 minutes	10 minutes	Fraction strips/ Paper strips	$\left.\right\|_{\text {minutes }} ^{25}$		10 minutes
Daily practice	Introduction		Main activity		Plenary
Group task	Group task		Whole class teaching	Individual task	Whole class teaching
Tell the groups to double these numbers: $\begin{aligned} & 2,30,26,12,14,4,20,10 \\ & 24,34 . \end{aligned}$	Give out the fraction strips from yesterday and the new strips and explain how to make fraction strips for thirds and sixths.		Teach the pupils How? Numerator and denominator, as shown left.	Tell the pupils to draw four rectangles in their exercise books.	Write these fractions on the chalkboard: $\frac{3}{8} \frac{1}{2} \frac{4}{6} \frac{5}{6} \frac{7}{8}$
Ask the pupils to write them in their exercise books like this: $14 \times 2=28$	Ask th up all Ask th	groups to line heir fraction strips.	Choose some pupils to shade in four sections and write the fraction that is shaded in: $\frac{4}{6}$	Tell them to divide the first rectangle into eight equal sections, the second rectangle into six equal sections, the third rectangle into four equal sections and the fourth rectangle into two equal sections.	Choose some pupils to read them out and circle the numerators.
Remind them that multiplying by two is the same as doubling.	'What as two Remin fractio that ho Choos to say fractio on the	action is the same sixths?' (a third) them that equivalent s are fractions ve the same value. some groups some equivalent s they notice strips.	Ask them to point to the numerator and the denominator.	Tell them to shade in sections to show three eighths in the first rectangle, four sixths in the second rectangle, three quarters in the third rectangle and a half in the fourth rectangle.	

Learning outcomes	Fraction strips
By the end of the lesson, most pupils will be able to:	Before the lesson: Read How? Fraction strips, as shown on number. Week 7, Day 1 (earlier this week) and make sure each group has all the fraction Strips they have made this week.
	Read How? Fractions: Greater than and less than, as shown below.

How?
Fractions:
and less than

| Write the signs for |
| :--- | :--- | :--- |
| less than <and |
| greater than $>$ on |
| the chalkboard. |

Lesso

Write two equivalent fractions on the chalkboard, as shown in the picture.

Explain that the numerator and the denominator have each been multiplied by 2 to get the equivalent fraction

Write two different equivalent fractions on the chalkboard, as shown in the picture.

Explain that the numerator and the denominator have each been multiplied by 3 to get the equivalent fraction.

Explain that this shape is one whole.

Divide the rectangle into eight equal sections and shade five sections.

Ask the pupils what fraction of the rectangle is shaded.

Ask them what fraction has not been shaded.

Ask the pupils to help you write this as a fraction addition sum.

	10 minutes	25 minutes		$\begin{aligned} & 10 \\ & \text { minutes } \end{aligned}$
Daily practice	Introduction	Main activity		Plenary
Group task	Whole class teaching	Whole class teaching	Pair task	Pair task
Explain How? Fractions: Making one, as shown left.	Show the pupils a card circle and ask, 'If you want to share a cake equally between eight people, what fraction of the cake will they each get?'	Ask the class how to find a half and a quarter of a number.	Read each problem and ask the pairs to write the calculation in their exercise books:	Read the following out to the pupils, 'Damola has 24 sweets. She gives a third to her sister. How many sweets does her sister get?'
Draw another rectangle				
on the chalkboard and ask the pupils to help you divide it into six equal		```Explain that l of }10\mathrm{ can be written as 2 '10 divided by 2 ='```	'Sade makes 24 cakes. She gives half of the cakes to her neighbour. How many cakes does her neighbour get?'	
sections and shade in four sections.	Demonstrate by cutting or folding the card circle into eighths.			Ask, 'What fraction of the sweets does Damola keep?'
Ask the groups to write		Write the word problems (shown right) on the chalkboard and discuss how to complete them with the pupils.		Explain that she keeps two thirds because$\frac{1}{3}+\frac{2}{3}=1$
a fraction addition sum that makes the value of one whole.	Ask the pupils, 'Would you rather have an eighth of a cake or a twelfth?'		'Lola has N100. She gives a tenth to her brother. How many Naira does her brother get?'	
	Cut or fold the second card circle into twelfths.	Ask if anyone can suggest how to find a tenth, a third and a fifth of a number.		
	Show the pupils that a twelfth is smaller than an eighth.		'A school buys 36 books. Class 1 gets a third of the books. How many books does Class 1 get?'	
			'Aminu has 30 goats. A fifth of them run away. How many run away?	

Words/phrases

Write these words on the chalkboard and leave them there for the week.
measure
seconds
minutes
hours
days
weeks
months
years
analogue
digital
am
pm

Learning expectations

By the end of the week:
All pupils will be
able to:
Tell the time using half past, quarter past and quarter to the hour.

Most pupils will be able to:
Tell the time on an analogue
clock using minutes to
and minutes past the hour.
Some pupils will be able to:
Change the time from analogue to digital.

Lesson
 title

 Day 1:

 Day 1:
 Time
 Telling the time

Clock

By the end of the lesson, most pupils will be able to:

Before the lesson:

Say the units used to measure time.

Tell the time using minutes past the hour.

Make a clock as shown below in How? Making an hours and minutes clock.
Have ready a real clock.

Cut out a cardboard circle.

Draw blank boxes for the clock numbers around the edge.

Divide in half and write 'to' and 'past' on the clock.

Make a short hand and a long hand.

Use a brass fastener to attach the hands to the clock.

	Lesson title		Clocks
Week 8:	Day 2:	Learning outcomes	Preparation
Time	Minutes to and past the hour	By the end of the lesson, most pupils will be able to:	Before the lesson:
		Change days into weeks. Tell the time using minutes	each group, as shown on Week 8, Day 1 (yesterday).
		past and minutes to the hour.	Read How? minutes to and past, as shown below.

How?
Minutes to and past

| Show the clock to |
| :--- | :--- | :--- |
| the pupils. |

Explain that we
say 'minutes past'
the hour until
we reach half past.

Tell them that
between half past
and o'clock, we
say 'minutes to' the
next hour.

15 minutes	10 minutes	Clocks	$\underset{\text { minutes }}{25}$ How ${ }^{\text {Clocks }}$		10 minutes
Daily practice	Introduction		Main activity		Plenary
Whole class teaching	Group task		Group task		Whole class teaching
Write the following on the chalkboard and ask the pupils to help you fill in the missing numbers: \square seconds in a minute.	Choose some pupils to explain what the shorter and longer hands are for.		Ask the groups to make 5 o'clock on their hours and minutes clocks.	Ask the groups to make these times on their clocks: 20 to 3 25 to 11 5 to 1 10 to 12	Make the following times on the clock for pupils to read: 20 past 6 half past 8 5 to 9 10 to 10
\square minutes in an hour. \square hours in a day. days in a week.	Ask the groups to write the missing numbers on their clocks.		Tell them to move the hands on the clock to make $5,10,20,25$ and half past 5		
\square weeks in a year. months in a year. days in a year.	Call out different times and ask the pupils to use their clocks to make them.		Ask them to move the longer hand on by five minutes (to the number 7).		
Ask the pupils how they could calculate the number of weeks in 21 days $(21 \div 7=)$	Make sure that they also move the shorter hand as it moves to the next hour.		Ask the pupils to count how many minutes are left before it will be 6 o'clock.		
Choose some pupils to say how many weeks there are in 42 days and 63 days.			'25 to 6'. Ask the groups to make each time from 25 to 6 until 6 o'clock.		

Week 8: Day 3:
 Time

A digital clock uses hours and minutes to tell the time.

The hours and minutes are seperated by a colon (:).

5 o'clock in the morning is shown as 5:00 in digital time.
How?
Digital clocks

Week 8:
Time
$\frac{\text { Day 4: }}{\substack{\text { Lesen } \\
\text { mien }}}$

Changing units
of time

Learning outcomes	Pr
By the end of the lesson, most pupils will be able to:	Be
Change days into weeks.	ea
Change hours into minutes and minutes into hours.	m

Preparation

Before the lesson:

Make the following flash cards for each group:
'7 days', '14 days', '21 days', continuing in multiples of 7 up to 70 days.
'1 week', '2 weeks', '3 weeks', up to 10 weeks.
Read How? Division using repeated
subtraction, as shown below.

Write this sum on the chalkboard and identify the place value of 160 minutes.

Remind the pupils that 60 minutes equals one hour.

Tell them to take away 60 from 160 until there is not a whole hour left.

Count together the number of times you have taken away 60.

Ask the pupils to write the answer in hours and minutes.

15 minutes$\| \begin{aligned} & \text { Flash cards }\end{aligned}$	10 minutes	$\left\lvert\, \begin{aligned} & 25 \\ & \text { minutes } \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice	Introduction	Main activity		Plenary
Group task	Pair task	Whole class teaching	Pair task	Pair task
Give each group the day and week flash cards.	Explain that we know the number of minutes in	Ask if anyone knows how we can change minutes to hours (divide by 60, using repeated subtraction).	Write '85 minutes' and '184 minutes' on the chalkboard.	Tell the pairs to ask each other questions about the number of minutes in an hour and the number of days in a week that they learned in Week 8, Day 3 (yesterday).
Ask them to arrange the	one hour is 60.			
next to the matching weeks.	many minutes there are in:	Demonstrate changing 160 minutes into hours and minutes, as shown in How? Division using repeated subtraction, left.	Ask the pairs to change these into hours and minutes in their exercise books.	
Tell the pupils to place the week cards face down on one side of the table and the day cards face	one hour half an hour a quarter of an hour two hours			
down on the other side.	If we want to find the	Repeat this process to change 99 minutes into hours and minutes.		
Tell each pupil, in turn, to pick up a card from both sides of the table. If they match, the pupil keeps them.	number of minutes in two hours we need to multiply 60 by 2. Ask the pairs to work out			
Continue until all of the cards are used up.	how many minutes there are in 4 hours, 6 hours and 5 hours.			

Lesson
title
Week 8: Day 5:
Time
am and pm

Flash cards/
Clocks

By the end of the lesson,

Before the lesson:

Make a set of analogue/digital/clock flash cards for each group, as shown below in How? Clock matching game.

Draw five different clock faces on the chalkboard to show times between 1 am and 11 pm .

Explain that 4 o'clock is written as 4:00 in digital time. a digital clock uses hours and minutes to tell the time.

Explain that quarter past eight is written as 8:15 in digital time.

Give each group a set of digital and analogue time cards.

Ask the groups to match the digital time with the analogue time.

15 minutes How Clock matching game/Flash cards	10 minutes	$\left.\begin{array}{\|l\|l} 25 \\ \text { minutes } \end{array} \right\rvert\, \begin{aligned} & \text { Clocks } \end{aligned}$	10 minutes
Daily practice	Introduction	Main activity	Plenary
Group task	Whole class teaching	Group task	Whole class teaching
Remind the pupils that they have been learning to tell the time with analogue and digital clocks.	Look at the clock faces on the chalkboard. Read and explain the morning (am) and	Draw clock faces showing the following times on the chalkboard: Quarter past six and write	Ask the pupils to answer questions about the units of time they have learned this week:
Give a set of digital and analogue time cards to each group.	afternoon (pm) diagrams. Choose some pupils to say activities they do during	'morning' underneath. Quarter to three and write 'afternoon' underneath.	'How many days are there in a year?' 'How many hours are
Play the game as shown left in How? Clock matching game.	am time and pm time.	twenty past eleven and write 'morning' underneath. Ask the pupils to write the times using am or pm in their exercise books. Tell the groups to make each time on their hours and minutes clock to help them complete the questions.	

Words/phrases

Write these words on the chalkboard and leave them there for the week.
addition subtraction
Hundreds boundary Thousands boundary sequences
minus
altogether
calculation
vertical method
place value
word problem

Learning expectations

By the end of the week: All pupils will be able to:
Add and subtract twodigit numbers crossing the Tens boundary using the vertical method.
Most pupils will be able to:
Solve addition and subtraction word problems using two-digit numbers and crossing the Tens boundary.
Some pupils will be able to:
Solve addition and subtraction word problems using three-digit numbers and crossing the Hundreds boundary.

$\overline{\text { Week 9: }}$	$\overline{\text { Day 1: }}$
Addition and subtraction	Crossing the Hundreds boundary

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson: Continue number sequences crossing the Hundreds boundary. Crossing the Hundreds boundary, as Add two-digit numbers crossing the Hundreds chow. boundary.

Ask the pupils to help you expand the numbers.

Tell them to add up the Units and the Tens.

Ask them to label the answers with the correct place value and add up the two answers.

Remind them to answer the question

15 minutes			$\begin{array}{\|l\|l} 25 \\ \text { minutes } \end{array}$	10 minutes
Daily practice		Introduction	Main activity	Plenary
Pair task		Whole class teaching	Individual task	Pair task
Revise place value with the pupils.	Write the following number sequences on the chalkboard and ask the pairs to complete them in their exercise books: 176, 177, 178, \square \square, \square , \square . \square.	Write '48 + 83' on the chalkboard.	Write the following addition calculations on the chalkboard and ask the pupils to complete them in their exercise books:$\begin{aligned} & 55+68= \\ & 84+36= \\ & 93+48= \\ & 78+74= \\ & 65+56= \end{aligned}$	Ask the pairs to share their work with each other and check their method and answers.
Write '8760' on the chalkboard and ask the class to say the number.		Explain how to solve $48+83$ using How? Vertical addition crossing the Hundreds boundary, as shown left.		
Choose some pupils to say the value of each digit.				
Repeat with 7602, 8003 and 9043	$\begin{aligned} & 395,396,397, \square, \\ & \square, \square, \square . \\ & 894,895,896, \square \\ & \square, \square, \square . \end{aligned}$	Ask the pupils to help you solve $72+55=$		
		Remind them that the numbers must be placed correctly under the H, T and U .	Remind the pupils to use the vertical method and line the digits up carefully.	
			If any pupils finish early, ask them to make up their own two-digit vertical addition sums using the digits $5,6,7,8$ or 9 .	

$\overline{\text { Week 9: }}$	$\overline{\text { Day 2: }}$
Addition and subtraction	Solving word problems

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
	Practise How? Solve addition word
Continue number sequences crossing the Thousands boundary.	problems, as shown below.
Solve word problems by adding two-digit numbers.	

How?
Solve addition
word problems

Write the problem on the chalkboard.

Ask pupils to underline the key words to help decide the calculation needed.

Tell them to underline the numbers you will use.

Ask the pupils to write the sum.

Tell them to answer the question using vertical addition.

$\left.\right\|_{\text {minutes }} ^{15}$		$\left\|\begin{array}{l} 10 \\ \text { minutes } \end{array}\right\| \text { How }$	$\left\lvert\, \begin{aligned} & 25 \\ & \text { minutes } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice		Introduction	Main activity	Plenary
Whole class teaching		Whole class teaching	Individual task	Whole class teaching
Remind the pupils that they have been writing number sequences that cross	Choose a pupil to say and write the number that comes after 1000 (1001).	Explain How? Solve addition word problems, as shown left.	Write the following word problems on the chalkboard and ask the pupils to	Tell the pupils to give their exercise book to their partner.
Choose come and write on the chalkboard the number that comes after 799.	Write these number sequences on the chalkboard and ask the pairs to complete them in their exercise books:	Write on the chalkboard: 'There are 34 pupils in Primary 4 and 77 pupils in Primary 5. How many pupils are there altogether?'	complete them in their exercise books: 'In the school library there are 37 books on animals and 95 books on cars.	Tell them to put a tick if they think a sum is correct and a cross if they think it is wrong.
Repeat, asking for the numbers that come after:	$\begin{aligned} & 1002,1003,1004, \\ & \square, \square, \square, \square, \square, \square . \\ & \square, \square \end{aligned}$	Choose some pupils to write the calculation needed	How many books are there altogether?'	
$800,699,500$ and 399. Write '999' and choose a pupil to write and say the next number (1000,		to solve this problem.	'Yemi bought a pen for N45 and a book for N85. How much did he spend altogether?'	
one thousand). Explain that they have now crossed the Thousands boundary.			'On Monday, Tina read 53 pages of her book. Her book has a total of 98 pages. How many pages are there left for her to read?'	

Week 9:	$\overline{\text { Day 3: }}$
Addition Subtraction and of two-digit subtraction numbers	

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson: Complete four-digit number sequences. as shown below. Use the vertical method to subtraction, subtract two-digit numbers.

How?
Vertical subtraction

Set the sum out vertically, lining up the digits in their place value correctly.

Ask the pupils to help you expand the numbers. Subtract the Units and subtract the Tens.

Ask the pupils to add the Tens and Units together.

Remind them to answer the question.

15 minutes	$\left.\right\|_{\text {minutes }} ^{10} \quad \text { How }$	25 minutes	$\begin{array}{\|l\|l} 10 \\ \text { minutes } \end{array}$
Daily practice	Introduction	Main activity	Plenary
Whole class teaching	Whole class teaching	Pair task	Whole class teaching
On the chalkboard, write: 9006, 9005, 9004, \square	Remind the pupils of the method shown left in How? Vertical subtraction.	Write the following subtraction calculations on the chalkboard	Arrange the class in a circle and explain that they are each going
Ask the pupils what is happening in this number	Ask them to help you work out 48	and ask the pupils to complete them in their exercise books:	to continue a number sequence in ascending order (going up).
sequence the numbers are descending - going down).	-35	$\begin{aligned} & \mathrm{T} U \\ & 56 \end{aligned}$	Say '1989', tell the pupil next to you to say
Choose some pupils to write the missing numbers on the chalkboard.		$\begin{array}{r} -25 \\ 49 \\ -37 \end{array}$	the next number (1990) and the next pupil to continue the sequence.
Write these number sequences on the chalkboard and ask the pairs to complete them in their exercise books:			Repeat until everyone has had a turn.
$\begin{aligned} & \text { 3004, 3003, 3002, } \\ & \square, \square, \square, \square, \square, \square . \square . \end{aligned}$		$\begin{array}{r} 77 \\ -\quad 14 \\ \hline \end{array}$	
$\begin{aligned} & 1203,1202,1201, \\ & \square, \square, \square, \square, \square, \square . \end{aligned}$		$\begin{array}{r} 35 \\ -31 \\ \hline \end{array}$	

$\overline{\text { Week 9: }}$	$\overline{\text { Day 4: }}$
Addition and subtraction	polving word
problems	

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson: Read four-digit numbers.
Practise How? Solving word problems Solve word problems by subtracting two-digit numbers.	

```
How?
Solving word
problems
using vertical
subtraction
```


Write the problem on the chalkboard.

Ask pupils to underline the key words to help decide the calculation needed.

Tell them to underline the numbers you will use and write the sum.

Remind them to answer the question.

Week 9:	$\overline{\text { Day 5: }}$
Addition and subtraction	polving word
problems	

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
	Practise How? Solving word problems using vertical addition, as shown below.
Identify place value in fourdigit numbers.	Write the following numbers on the chalkboard:
Solve word problems that involve adding and subtracting two-digit numbers.	
	3471
	8642

```
How?
Solving word
problems
using vertical
subtraction
```


Write the problem on the chalkboard.

Ask pupils to underline the key words to help decide the calculation needed.

Tell them to underline the numbers you will use.

Remind the pupils to answer the question using vertical addition.

Words/phrases

Write these words on the chalkboard and leave them there for the week.
grid method
column
repeated subtraction
multiple
division
word problem
multiplication
divide
four-digit numbers

Learning expectations

By the end of the week:
All pupils will be
able to:
Divide two-digit numbers by a single-digit number using repeated subtraction.

Most pupils will be able to:
Solve multiplication and division word problems.
Some pupils will be able to:
Solve multiplication and division word problems using three- and fourdigit numbers.

Week 10:	$\overline{\text { Day 1: }}$
Multiplication and division Multiplication	using the grid method

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
	Practise How? Multiplication using the grid
Say answers in the	method, as shown below.
7 times table.	
Multiply two-digit numbers by a single-digit number using the grid method.	

How?
Multiplication
using the
grid method

Write the sum on the chalkboard.

Draw a grid and set the sum out.

Ask the pupils to multiply the numbers in the grid.

Tell them to add up the answers and complete the sum.

$\begin{array}{l\|l} 15 & \text { Buzz game } \\ \text { minutes } \end{array}$	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes }\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 25 \\ & \text { minutes } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice	Introduction	Main activity	Plenary
Pair task	Whole class teaching	Pair task	Whole class teaching
Remind the class that they have been learning the seven times table.	Explain How? Multiplication using the grid method, as shown left.	Write these calculations on the chalkboard for the pairs to complete in their exercise books, using the grid method:$\begin{aligned} & 32 \times 7= \\ & 44 \times 6= \\ & 27 \times 7= \\ & 19 \times 6= \\ & 27 \times 5= \end{aligned}$	Ask the class to say the 7 times table with you.
Choose some pupils to help you write the 7 times table on the chalkboard.	Write ' 36×7 =' on the chalkboard.		Ask questions from the 7 times table and choose some pairs to answer, eg:$\begin{aligned} & 7 \times 7= \\ & 21 \div 7= \end{aligned}$
Play buzz using the 7 times table.	Ask the pupils to help you as you demonstrate drawing the grid and setting the calculation out.		
		Choose some pairs to explain their working out on the chalkboard.	

Week 10:	Day 2:
Multiplication and Multiplication division of three- digit numbers$\ggg l$	

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
	Practise How? Multiplication of threedigit numbers, as shown below.
Multiply three-digit numbers by a singledigit number using the grid method.	

How?
Multiplication
of three-
digit numbers

Write the sum on the chalkboard and expand the threedigit number.

Draw a grid and set the sum out.

Ask the pupils to multiply the numbers in the grid.

Tell them to add up the answers and complete the sum.

15 minutes	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$	25 minutes	$\left\lvert\, \begin{aligned} & 10 \\ & \text { minutes } \end{aligned}\right.$
Daily practice	Introduction	Main activity	Plenary
Pair task	Whole class teaching	Pair task	Whole class teaching
Ask the pupils to help you write the 9 times table on the chalkboard.	Explain How? Multiplication of three-digit numbers, as shown left.	Write these sums on the chalkboard: $\begin{aligned} & 234 \times 2= \\ & 432 \times 2= \\ & 149 \times 3= \\ & 134 \times 7= \end{aligned}$ Ask the pairs to complete them in their exercise books, using the grid method.	Write this word problem on the chalkboard, 'Every week, a school used 144 pieces of chalk. How many chalks would be used after five weeks of the term?'
Ask them what they notice about the answers.			
Explain that the digits in the answers add up to 9 , eg: $\begin{aligned} & 2 \times 9=18(1+8=9) \\ & 3 \times 9=27(2+7=9) \end{aligned}$			the term?' Read the problem and ask, 'What are the key words to help you work out the calculation?'
Ask the pupils to write the 9 times table in their exercise books.			Solve the problem together, showing the working out on the chalkboard.

$\overline{\text { Week 10: }}$	$\overline{\text { Day 3: }}$
Multiplication and division	Multiplication word
problems	

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
	Practise How? Solving multiplication word
Say answers from the 9 times table.	problems, as shown below.
Solve multiplication word problems using the grid method.	

How?
Solving multiplication
word problems

Write the problem on the chalkboard.

Ask pupils to underline the key words to help decide the calculation needed.

Tell them to underline the numbers you will use and write the sum.

Ask them to set up the grid method and remind them to answer the question.

Tell them to subtract 500 from 580 (80). Think of a multiple of 10 nearest to 80 in the 5 times table.

Ask them to subtract 50 from 80 (30).
Think of a multiple nearest to 30
in the 5 times table.

Explain that $100+10+6=116$, so $580 \div 5=116$.

15 minutes	10 minutes	$\left\lvert\, \begin{aligned} & 25 \\ & \text { minutes } \end{aligned}\right.$	10 minutes
Daily practice	Introduction	Main activity	Plenary
Whole class teaching	Whole class teaching	Whole class teaching	Whole class teaching
Ask the class to help you write the 7 and 9 times tables on the chalkboard.	Remind the pupils that they have been dividing bigger numbers using repeated subtraction.	Teach the pupils How? Division of three-digit numbers, as shown left.	Choose some pairs to explain their working out on the chalkboard.
Remind the pupils that they can use the times tables to help work out division problems, eg: $\begin{aligned} & 49 \div 7=7 \\ & 7 \times 7=49 \end{aligned}$		Write these sums on the chalkboard: $\begin{aligned} & 784 \div 7= \\ & 936 \div 9= \\ & 981 \div 9= \\ & 763 \div 7= \end{aligned}$	
Write these sums on the chalkboard: $\begin{aligned} & 54 \div 9= \\ & 28 \div 7= \\ & 72 \div 9= \\ & 56 \div 7= \\ & 63 \div 9= \end{aligned}$		Ask the pairs to use repeated subtraction to solve these division sums in their exercise books.	
Tell the pupils to use the times tables on the chalkboard to help them complete the sums in their exercise books.			

Week 10: Day 5:
Multiplication
and
division

Solving word problems

Learning outcomes	Preparation
By the end of the lesson, most pupils will be able to:	Before the lesson:
Answer questions from a ball or another object to throw. the 7 and 9 times tables.	Read, How? Solving word problems using division, as shown below.
Solve word problems.	

Solve word problems.

Write the problem on the chalkboard.

Ask pupils to underline the key words to help decide the calculation needed.

Tell them to underline the numbers you will use and write the sum.

Ask them to set up the division sum.

Remind them to answer the question.

$\begin{array}{l\|l} 15 & \text { Ball } \\ \text { minutes } \end{array}$	10 minutes	$\begin{array}{\|l\|l} 25 \\ \text { minutes } \end{array}$	$\begin{array}{\|l} 10 \\ \text { minutes } \end{array}$
Daily practice	Introduction	Main activity	Plenary
Whole class teaching	Whole class teaching	Pair task	Whole class teaching
Take the pupils outside and ask them to form a circle.	Use this word problem to teach pupils How? Solving word problems using division, as shown left, 'A farmer has 250 yams. He shares them between five traders. How many yams will each trader get?'	Write the following word problems on the chalkboard and ask the pupils to complete them in their exercise books.	Ask the class to say the 7 and 9 times tables with you
Call out a multiplication sum from the 7 or 9 times table and throw the			Ask questions from the 7 and 9 times tables and choose some pairs to answer, eg:$\begin{aligned} & 7 \times 6= \\ & 81 \div 9= \end{aligned}$
ball to a pupil.		Ask the pairs to say what	
Tell the pupil to say the answer.		calculation is needed for each problem (1 and 2 are division and 3 is	
Tell the pupil with the ball		multiplication):	
to say another multiplication sum from the 7 or 9 times table and throw the ball to another pupil.		'How many tubers of yam will each farmer get if seven of them share 126 tubers of yams?'	
Repeat until everyone has had a turn.		'There are 252 pupils in a school and there are six classes. How many pupils are in a class?'	
		'A box contains 112 biscuits. How many biscuits are there in nine boxes?'	

Credits
Many different stakeholders have contributed to the development and production of these lesson plans.
Much of the work was done by the Kwara State School Improvement Team.

Special thanks go to

Honourable Commissioner of Education and Human Capital Development (MOEHCD), Alhaji Mohammed Atolagbe Raji, the Executive Chairman of the State Universal Basic Education Board (SUBEB) Alhaii (Barr) Lanre Daibu and their staff for their time and valuable input.
The Teacher Development Division School, MOEHCD, School Improvement Unit, SUBEB and the State School Improvement Team (SSIT) for their contributions.

Thanks also go to all the teachers who have used these plans and started to bring about change in their classrooms.

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

These materials were produced with UKaid technical assistance from DFID under ESSPIN.
Copyright © Cambridge Education Limited 2014.

Enugu State Government

Produced with the
support of

